Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Med Virol ; 94(11): 5103-5111, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1976736

ABSTRACT

The outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative pathogen for the coronavirus disease 2019 (COVID-19) pandemic, has greatly stressed our healthcare system. In addition to severe respiratory and systematic symptoms, several comorbidities increase the risk of fatal disease outcomes, including chronic viral infections. Increasing cases of lytic reactivation of human herpesviruses in COVID-19 patients and vaccinated people have been reported recently. SARS-CoV2 coinfection, COVID-19 treatments, and vaccination may aggravate those herpesvirus-associated diseases by reactivating the viruses in latently infected host cells. In this review, we summarize recent clinical findings and limited mechanistic studies regarding the relationship between SARS-CoV-2 and different human herpesviruses that suggest an ongoing potential threat to human health in the postpandemic era.


Subject(s)
COVID-19 , Herpesviridae , Humans , Pandemics , RNA, Viral , SARS-CoV-2
2.
Antimicrob Agents Chemother ; 66(3): e0239521, 2022 03 15.
Article in English | MEDLINE | ID: covidwho-1741569

ABSTRACT

Recently, remdesivir and molnupiravir were approved for treating COVID-19 caused by SARS-CoV-2 infection. However, little is known about the impact of these drugs on other viruses preexisted in COVID-19 patients. Here we report that remdesivir but not molnupiravir induced lytic reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV), two major oncogenic herpesviruses. Remdesivir induced mature virion production from latently infected cells. Mechanistic studies showed that remdesivir induced KSHV and EBV reactivation by regulating several intracellular signaling pathways.


Subject(s)
COVID-19 Drug Treatment , Epstein-Barr Virus Infections , Herpesvirus 8, Human , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Herpesvirus 4, Human/physiology , Humans , SARS-CoV-2 , Signal Transduction , Virus Activation
3.
Commun Biol ; 4(1): 682, 2021 06 03.
Article in English | MEDLINE | ID: covidwho-1260957

ABSTRACT

An outbreak of the novel coronavirus SARS-CoV-2, the causative agent of Coronavirus Disease-2019 (COVID-19), a respiratory disease, has infected almost one hundred million people since the end of 2019, killed over two million, and caused worldwide social and economic disruption. Because the mechanisms of SARS-CoV-2 infection of host cells and its pathogenesis remain largely unclear, there are currently no antiviral drugs with proven efficacy. Besides severe respiratory and systematic symptoms, several comorbidities increase risk of fatal disease outcome. Therefore, it is required to investigate the impacts of COVID-19 on pre-existing diseases of patients, such as cancer and other infectious diseases. In the current study, we report that SARS-CoV-2 encoded proteins and some currently used anti-COVID-19 drugs are able to induce lytic reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV), one of major human oncogenic viruses, through manipulation of intracellular signaling pathways. Our data indicate that those KSHV + patients especially in endemic areas exposure to COVID-19 or undergoing the treatment may have increased risks to develop virus-associated cancers, even after they have fully recovered from COVID-19.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/complications , Herpesvirus 8, Human/physiology , SARS-CoV-2/physiology , Sarcoma, Kaposi/etiology , Virus Activation , Azithromycin/pharmacology , Benzamidines/pharmacology , Cell Line , Guanidines/pharmacology , Herpesviridae Infections/chemically induced , Herpesviridae Infections/etiology , Herpesvirus 8, Human/drug effects , Humans , Oncogenic Viruses/drug effects , Oncogenic Viruses/physiology , SARS-CoV-2/drug effects , Sarcoma, Kaposi/chemically induced , Viral Proteins/metabolism , Virus Activation/drug effects , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL